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Abstract We present near-simultaneous measurements from two THEMIS spacecraft at the dayside
magnetopause with a 1.5 h separation in local time. One spacecraft observes a high-density plasmaspheric
plume while the other does not. Both spacecraft observe signatures of magnetic reconnection, providing
a test for the changes to reconnection in local time along the magnetopause as well as the impact of high
densities on the reconnection process. When the plume is present and the magnetospheric density exceeds
that in the magnetosheath, the reconnection jet velocity decreases, the density within the jet increases, and
the location of the faster jet is primarily on field lines with magnetosheath orientation. Slower jet velocities
indicate that reconnection is occurring less efficiently. In the localized region where the plume contacts
the magnetopause, the high-density plume may impede the solar wind-magnetosphere coupling by mass
loading the reconnection site.

1. Introduction

It has been predicted that solar wind-magnetosphere coupling is limited during times when dense plasma-
spheric plumes contact the dayside magnetopause. These predictions are based on theory and modeling
which show that the reconnection rate decreases when the plasma density increases [e.g., Cassak and Shay,
2007; Birn et al., 2008]. As the plume contacts the magnetopause, it should mass load the region and slow
magnetopause reconnection. This in turn should decrease the level of solar wind-magnetosphere coupling.

Observationally, the control of solar wind-magnetosphere coupling by the plume has been inferred in sta-
tistical work by Borovsky and Denton [2006]. Borovsky and Denton [2006] examined many years of solar wind
measurements and geosychronous plume observations to show reduced solar wind-magnetosphere cou-
pling as measured through geomagnetic indices. Global magnetohydrodynamic (MHD) modeling shows
that mass loading of the magnetopause reconnection will greatly slow the reconnection rate in a localized
region, which is consistent with previous results [Borovsky et al., 2008].

Although many measurements of the plume exist at geosynchronous orbit [e.g., Moldwin et al., 1994;
Elphic et al., 1996; Borovsky and Denton, 2008], few spacecraft measurements have been reported of the
plume actually contacting the magnetopause [e.g., Su et al., 2000; McFadden et al., 2008a; Walsh et al.,
2013]. The current study provides simultaneous spacecraft observations at the magnetopause with a
separation in local time. One spacecraft observes a high-density plume contacting the magnetopause
near local noon while another spacecraft encounters the magnetopause prenoon and does not observe
the plume. Several studies have presented cases with multiple spacecraft observing reconnection at
the magnetopause with local time separation [Phan et al., 2000; Dunlop et al., 2011], but this is the first
involving the plume. Since the magnetosheath properties are roughly the same at the two spacecraft,
the observations serve as a test for the impact of the plume on magnetopause reconnection and solar
wind-magnetosphere coupling.

2. Instrumentation

In situ observations from the Time History of Events and Macroscale Interactions during Substorms (THEMIS)
spacecraft are used. Magnetic field measurements are made with the fluxgate magnetometer (FGM) [Auster
et al., 2008]. Onboard plasma moments from the ESA instrument [McFadden et al., 2008b] are used for
bulk flow velocities, and energetic particle measurements are obtained from the Solid State Telescope.
The electron density measurements come from the spacecraft potential measured by EFI [Bonnell et al.,
2008], since much of the cold plasmaspheric population is below the energy threshold of ESA (∼8 eV).
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Figure 1. The locations of ThA (blue) and ThD (red) on
15 September 2008 in geocentric solar magnetospheric
(GSM). The grey region is a nominal location of the
plasmasphere and plume.

3. Observations
During a 45 min interval from 13:10 to 13:55 UT on 15
September 2008, both ThA and ThD cross the mag-
netopause a number of times. The spacecraft are
primarily equatorial and are separated by 1.5 h in
magnetic local time at 11.6 h and 10.0 h, respectively.
The locations of the spacecraft are shown in Figure 1.

Figure 2 presents solar wind observations from ThB
which is located just upstream of the bow shock at
GSM (X,Y,Z) = (26, −16, 3) RE . The interplanetary mag-
netic field (IMF) Bz component remains southward for
the entire interval with the exception of several short
periods near 13:41UT. For much of the interval, the
IMF clock angle (CA = tan−1( By

Bz
)) is greater than 120◦.

The magnetic field strength and electron density
remain nearly constant during this interval, indicating
steady inputs to the magnetopause. Propagation time
of the measurements from the upstream spacecraft
(ThB) to the subsolar magnetopause is estimated at
less than 13 min based on the bulk flow velocity.

Figure 3 shows the measurements from ThA and ThD during the same time period while each encounters
the magnetopause. Both spacecraft measure the electron density in the magnetosheath to be ∼5–10 cm−3;
however, the density measured inside the magnetosphere by the two spacecraft differs by 2 orders of
magnitude. Inside the magnetosphere ThD observes a density of 0.4–0.7 cm−3, typical for the dayside
outer magnetosphere. ThA measures the density of the plume plasma contacting the magnetopause to be
18–72 cm−3. The magnetic field and velocity measurements are presented in the boundary normal coordi-
nate system (LMN) where L is along the outflow direction, M is along the X line, and N is the current sheet
normal. The coordinate system was identified through minimum variance of the magnetic field (MVAB)
[Sonnerup and Cahill, 1967]. The spacecraft observe jets or enhancements in the vL component in both the
positive and negative directions while encountering the boundary layer. This indicates that the spacecraft
were making observations both above and below the reconnection site as seen by Trenchi et al. [2008].
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Figure 2. Upstream solar wind measurements from ThB. The spacecraft is just upstream of the bow shock at (X, Y, Z) =
(26, −16, 3) RE . From top to bottom, the panels are magnetic field vector, IMF clock angle, magnetic field magnitude, and
electron density.
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Figure 3. THEMIS measurements for the same time period (13:10-13:55 UT) are shown for ThD and ThA. (a,e) Electron energy spectra, (b,f ) electron density
derived from spacecraft potential, and (d,h) magnetic field components. Both spacecraft cross the magnetopause a number of times during the interval. The black
arrows indicate full boundary crossings with reconnection.

We attribute the difference in density between the two spacecraft to be from a localized plasmaspheric
plume given the magnitude of the density and the location of the observations. A number of stud-
ies have demonstrated a connection between the plasmaspheric structure and geomagnetic activity
[e.g., Chappell et al., 1970; Higel and Lei, 1984; Carpenter et al., 1993]. During geomagnetically disturbed peri-
ods, the plasmapause erodes radially inward and a drainage plume can form in the dusk sector extending
sunward toward the magnetopause [Spasojević et al., 2003]. The current event is consistent with this picture
as it occurs during a moderate geomagnetic storm with a Sym-H index of −40 nT. During this time period,
the enhanced magnetospheric convection brings the plasmaspheric plume to the magnetopause where it
is observed by one of the two spacecraft at the boundary.

4. Reconnection

During the time period from 13:10 to 13:55 UT, both spacecraft experience a number of full and partial
magnetopause crossings. For closer analysis of the structure of reconnection, we select full magnetopause
crossings with reconnection occurring. We identify full crossings by a rotation of the magnetic field and a
change in density. For a rotational discontinuity at the magnetopause, MHD predicts that the outflow will
be Alfvènic in the reference frame of the X line. In the case of asymmetric reconnection the Alfvén speed is
a hybrid of the Alfvén speed on each side of the current sheet. A 15 s time period just inside and outside the
magnetopause is averaged to obtain the plasma parameters in the magnetosphere and magnetosheath.
Reconnection during these crossings is identified when the jet speed is within 25% of the predicted hybrid
Alfvén velocity from Cassak and Shay [2007]. The jet velocities are obtained by subtracting the reconnecting
component of the exhaust velocity (vL) from the background flow in the L direction. The exhaust velocity is
selected as the maximum value within the current sheet.

The background flow is taken from the side with the larger mass inflow which is determined from 𝜌∕B
following Cassak and Shay [2007]. The ratio of mass inflow for each crossing is given in Table 1 with the
assumption that the effective mass is similar for the plasma on both sides of the magnetopause. At ThD, the
magnetosheath mass inflow clearly dominates and subtracting the background vL from the magnetosheath
is a clear choice. At ThA, the magnetospheric mass inflow is larger but does not dominate. In this scenario it
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Table 1. Parameters for Reconnection Measurementsa

Time vjet vC+S njet ns nm Bs Bm Mass Inflow
hh:mm SC (km/s) (km/s) (cm−3) (cm−3) (cm−3) (nT) (nT) Ratio Jet Field

13:29 D 363 441 1.7 4.2 0.5 21 63 0.04 ’sphere

13:34 D 362 364 2.9 8.4 0.4 24 63 0.05 ’sphere

13:44 D 255 283 7.2 11.9 0.7 23 54 0.04 ’sphere

13:26 A 190 213 15.2 9.8 20.3 51 29 2.35 ’sheath

13:28 A 126 163 14.9 11.6 18.3 30 28 1.69 ’sheath

13:31 A 221 176 15.9 9.4 55.0 38 56 3.97 ’sheath

a“SC” is the THEMIS spacecraft. vC+S is the calculated Cassak and Shay hybrid Alfvén velocity. The subscript
m indicates magnetospheric side while s is the magnetosheath side. The ratio of magnetosphere to magne-
tosheath mass inflow is nmBs

nsBm
. “Jet Field” is the orientation of the magnetic field vector at the time of the maxi-

mum jet velocity. A field orientation with +BL is magnetospheric while −BL is magnetosheath for this event.

is likely that both sides are contributing plasma, so the decision is less clear. Since we are only selecting one
side to subtract a background, we choose the side with the larger mass inflow. In these crossings vL from
the magnetosheath is subtracted when no plume is present (ThD), while vL from the magnetosphere is sub-
tracted when the plume is present (ThA). We note, however, that our criteria for reconnection are met using
vL from either side of the boundary.

Using the crossing by ThD at 13:34 UT as an example (shown in Figure 4), the maximum vL component
within the exhaust is 370 km/s while the background component (magnetosheath in this case) is 8 km/s.
This gives a jet velocity of vjet = vexhaust - vbackground = 362 km/s. The hybrid Alfvén speed is 364 km/s, so the
jet measurement is 99% of the predicted value and is therefore selected as a reconnection event. With these
criteria, we have identified three periods for each spacecraft when reconnection is observed during a full
magnetopause crossing. The times of these periods and reconnection parameters are provided in Table 1.
The times are also shown in Figure 3 with black arrows. We note that the derivation of the hybrid Alfvén
velocity from Cassak and Shay [2007] assumes vL = 0 km/s on both sides of the current sheet which does not
occur in these measurements. The background flow is subtracted from the exhaust measurement to obtain
an appropriate reference frame for comparison with the prediction.
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Figure 4. Magnetopause crossing from ThD and ThA. (a, e) Ion energy spectragram, (b, f ) electron density derived from
spacecraft potential, (c, g) bulk flow components, and (d, h) magnetic field components. The magnetic field and bulk
flow are in boundary normal coordinates determined through MVAB. The vertical dashed bars indicate the time of the
peak jet velocity.
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Two near-simultaneous crossings from ThA and ThD are shown in Figure 4 for closer analysis. These
are representative of the other crossings by each spacecraft. In this example ThA crosses the magne-
topause from the magnetosheath to the magnetosphere at 13:31:37 UT. Three minutes later, ThD passes
from the magnetosphere to the magnetosheath at 13:34:45 UT. ThD measures a density of 0.2 cm−3

inside the while ThA measures a magnetospheric density of 55 cm−3 (Figures 4b and 4f). Part of the cold
plume plasma can be seen as a flux enhancement in the ion energy spectragram with an energy near
10 eV (Figure 4e). This cold population coexists with the hotter magnetospheric population observed by
both spacecraft.

The density asymmetry between the spacecraft impacts several aspects of the reconnection. The first aspect
is the location of the reconnection jet in respect to the X line. In the case of ThD, the density is higher in
the magnetosheath, resulting in asymmetric reconnection where the jet lies primarily on magnetic field
lines with magnetospheric orientation (+BL) (Figures 4c and 4d). This is typical for terrestrial magnetopause
reconnection. ThA observes a higher density in the magnetosphere, causing the reverse asymmetry. In this
scenario the jet lies primarily on magnetic field lines of magnetosheath orientation (−BL) or lower density
(Figures 4g and 4h). In each case the jet is displaced toward the side with lower density and lower 𝜌∕B, con-
sistent with predictions by MHD theory [Cassak and Shay, 2007]. The magnetic field orientation during the
peak jet velocity for the other crossings is consistent with what each spacecraft observes in this example
and is included in Table 1.

The magnitude of the jet velocities are also different between the spacecraft (Figures 4c and 4g). ThD
observes a significantly larger jet velocity (vjet=362 km/s) than ThA (vjet=162 km/s). ThD also observes lower
density inside the magnetopause than ThA. The jet is caused by the magnetic curvature force that acceler-
ates the exhaust plasma to the hybrid Alfvén speed. The Alfvén speed is inversely proportional to n1∕2, so a
slower jet velocity in the crossings with higher density is consistent with the observations. In addition to the
velocity, the density within each exhaust jet is also different in the two cases. The density shows mixing of
the plasma populations from both sides. In the case of ThA, when reconnection is highly asymmetric, the
bulk of the contribution comes from the magnetosheath side or the side with larger density. The velocity
and density within each jet are given in Table 1.

5. Discussion

A predicted effect of the plasmaspheric plume at the magnetopause is that the dense plasma in the
magnetosphere will slow reconnection and decrease solar wind-magnetosphere coupling [Borovsky
and Denton, 2006]. Theory of symmetric [Sweet, 1958], as well as asymmetric reconnection [Cassak and
Shay, 2007], shows the reconnection rate to scale with the Alfvén speed or inversely with n1∕2. As the
density increases, the reconnection rate decreases. The multispacecraft observations presented here
show reconnection occurring over a range of local time with similar magnetosheath but greatly different
magnetospheric densities.

With current spacecraft instrumentation, observational measurements of a dimensionless reconnection
rate can vary by a factor of 2 or more for a single event depending on what techniques are used [Phan
et al., 2001]. These techniques often require identifying a boundary normal of the current sheet which
can be done through several methods, as well as identifying the velocity of the X line structure under an
assumption of constant motion. Both of these can introduce significant errors into the measurement. An
alternative way to measure the efficiency of reconnection is to monitor the velocity of the exhaust jet.
Although it does not produce a rate quantitatively similar to other methods (i.e., Bn/|B| or vn/vA), the effi-
ciency of reconnection at two spacecraft can be compared by the magnitude of the reconnection jet. Using
the jet velocity assumes that the dimensionless reconnection rate stays roughly constant over the time
period of the spacecraft pass. If the reconnection rate does not change significantly, the velocity of the jet is
a function of the inflow speed which is in turn a measure of the reconnection rate.

ThD observes faster jets attending crossings without a plume than ThA observes with a plume. This is con-
sistent with the idea that the reconnection rate decreases with higher densities and that the plasmaspheric
plume can slow reconnection when it contacts the magnetopause. On a larger scale, these observations
show that reconnection will be impacted in a localized region where the plume contacts the magne-
topause. The size of the plume at the magnetopause must also determine the impact on the overall solar
wind-magnetosphere coupling, and a measure of this size is needed to quantify this effect. In addition to
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affecting reconnection, the newly opened field lines will transport plasmaspheric plasma as they convect
over the poles to the nightside where the plasma is deposited into the tail and lobes [Elphic et al., 1997].
To understand the global impact of the plume on solar wind-magnetosphere coupling, one must follow
the entire circulation pattern beginning with the entrainment of dense plasmaspheric material on newly
reconnected magnetic field lines.

6. Conclusion

Near-simultaneous spacecraft observations at the magnetopause show the presence of a localized region
with high densities from the plasmaspheric plume. Separated by 1.5 h in magnetic local time, both space-
craft measure magnetic reconnection; however, only one measures the high-density plume. When the
plume is present, the reconnection jets have lower velocities and larger densities. A decreased jet velocity
indicates a localized reduction in solar wind-magnetosphere coupling due to the presence of the plasmas-
pheric plume. These observations also show that the properties of reconnection are a function of the local
plasma density and vary along the surface of the magnetopause.
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Spasojević, M., J. Goldstein, D. L. Carpenter, U. S. Inan, B. R. Sandel, M. B. Moldwin, and B. W. Reinisch (2003), Global response of the
plasmasphere to a geomagnetic disturbance, J. Geophys. Res., 108(A9), 1340, doi:10.1029/2003JA009987.

Sonnerup, B. U. Ö, and L. J. Cahill Jr. (1967), Magnetopause structure and attitude from Explorer 12 observations, J. Geophys. Res., 72(1),
171–183, doi:10.1029/JZ072i001p00171.

Su, Y.-J., J. E. Borovsky, M. F. Thomsen, R. C. Elphic, and D. J. McComas (2000), Plasmaspheric material at the reconnecting magnetopause,
J. Geophys. Res., 105(A4), 7591–7600, doi:10.1029/1999JA000266.

Sweet, P. A. (1958), The neutral point theory of solar flares, in Electromagnetic Phenomena in Cosmical Physics, edited by B. Lehnert,
p. 123, Cambridge Univ. Press, New York.

Trenchi, L., M. F. Marcucci, G. Pallocchia, G. Consolini, M. B. Bavassano Cattaneo, A. M. Di Lellis, H. Reḿe, L. Kistler, C. M. Carr, and J. B.
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